تحلیل مقایسه ای کارآمدی مدلهای رگرسیون بردار پشتیبان، شبکه عصبی و arima با مدلهای ترکیبی در پیش بینی بازده شاخص بورس اوراق بهادار تهران
thesis
- وزارت علوم، تحقیقات و فناوری - دانشکده علوم اقتصادی - دانشکده مدیریت و حسابداری
- author عبداله جدیدی
- adviser محمدعلی رستگار محمدرضا رستمی
- publication year 1393
abstract
همواره پیش بینی روند شاخص بورس یکی از چالشهای پیشروی معاملهگران در بازارهای سرمایه بوده که این مساله به عنوان یک امر ضروری وکاربردی مطرح میشود .البته باید پیش بینی را مورد توجه قرار داد که با دقت بیشتری صورت گیرد و نسبت به نتایج واقعی مشاهده شده خطای کمتری داشته باشد. بنابراین با وجود تمام این شرایط ما نیازمند مدلی هستیم که بتواند با خطای کمتری بازده شاخص کل بورس را که موضوع مورد بررسی در این تحقیق می باشد را پیش بینی کند.با عنایت به موارد ذکر شده در این پژوهش به منظور پیش بینی شاخص کل بورس تهران اقدام به تحلیل مقایسه ای کارآمدی مدلهای رگرسیون بردار پشتیبان، شبکه عصبی و arima با مدلهای ترکیبی پرداخته شده است.
similar resources
پیش بینی بازده شاخص بورس اوراق بهادار با استفاده از مدلهای شبکه ها عصبی مصنوعی شعاع پایه
تا کنون برای پیش بینی بازده سهام و بازده شاخص از روش های متعددی استفاده شده است در این میان هوش مصنوعی و شبکه های عصبی مصنوعی یکی از روش های پیش بینی بازده شاخص بوده است. در حال حاضر به دنبال بررسی عملکرد شبکه عصبی شعاع پایه برای پیشبینی بازده شاخص هستیم. بدین منظور از شاخص بورس اوراق بهادار تهران استفاده شده است و عملکرد شبکه عصبی شعاع پایه و شبکه عصبی پرسپترون مقایسه شدهاند. نوع آزمون عملکر...
full textمقایسه عملکرد مدلهای شبکه عصبی مصنوعی واتورگرسیون برداری در پیش بینی شاخص قیمت و بازده نقدی
هدف این مقاله تجزیه و تحلیل های اقتصادی، پیش بینی صحیح و دقیق متغیرهای اقتصادی است. در این زمینه، روشهای مختلفی برای پیش بینی در اقتصاد وجود دارد، که از جمله آنها میتوان به مدلهای رگرسیون ، معادلات همزمان و... اشاره کرد. مدلهای سری زمانی نیز از جمله مدلهای اقتصادی می باشند که در آن پیش بینی مقادیر سری، بیش از هر چیز به عهده خودشان گذاشته می شود اما استفاده از روش های غیر کلاسیک در شناسایی مدل و...
full textپیش بینی بازده شاخص بورس اوراق بهادار با استفاده از مدلهای شبکه ها عصبی مصنوعی شعاع پایه
تا کنون برای پیش بینی بازده سهام و بازده شاخص از روش های متعددی استفاده شده است در این میان هوش مصنوعی و شبکه های عصبی مصنوعی یکی از روش های پیش بینی بازده شاخص بوده است. در حال حاضر به دنبال بررسی عملکرد شبکه عصبی شعاع پایه برای پیش بینی بازده شاخص هستیم. بدین منظور از شاخص بورس اوراق بهادار تهران استفاده شده است و عملکرد شبکه عصبی شعاع پایه و شبکه عصبی پرسپترون مقایسه شده اند. نوع آزمون عملکر...
full textپیش بینی شاخص بورس اوراق بهادار تهران با استفاده از شبکه های عصبی
اندازه و روند شاخصهای قیمت سهام یکی از مهمترین عوامل تاثیرگذار بر تصمیمات سرمایه گذاران در بازارهای مالی میباشد. جهت پیشبینی بازار از تکنیکهای مختلفی استفاده شده است که معمولترین آنها روشهای رگرسیون و مدلهای 3ARIMA هستند اما این مدلها در عمل جهت پیشبینی بعضی از سریها ناموفق بودهاند. در تحقیق حاضر برای پیشبینی شاخص کل بورس از مدل شبکههای عصبی پیش خور4 با قانون یادگیری پس انتشار خطا5 در...
full textبررسی سودمندی مدلهای ارزشگذاری در پیش بینی قیمت سهام در بورس اوراق بهادار تهران
این تحقیق بر آن است تا توانایی مدلهای ارزشگذاری سهام شامل مدل نسبت قیمت به سود (ضرایب تکاثری )و مدل ارزش افزوده بازاردر پیش بینی قیمت بازار سهام را طی یک دوره 4 ساله (1383-1386) در سه صنعت فلزات اساسی، خودروو ساخت قطعات و صنعت سیمان مورد بررسی قرار دهد . ارزش های برآورد شده سهام با قیمتهای واقعی آنها به منظور صحت مدل های استفاده شده در این فرایند ارزشیابی مورد مقایسه قرار می گیرند. این تحقیق ا...
full textمقایسه قابلیتهای مدلهای مبتنی بر حافظه بلندمدت و مدل های شبکه عصبی پویا در پیشبینی بازدهی بورس اوراق بهادار تهران
این مقاله با هدف معرفی یک الگوی مناسب جهت پیشبینی شاخص بازدهی بورس اوراق بهادار تهران صورت پذیرفته است. دادههای مورد استفاده در این پژوهش به صورت روزانه و شامل بازهی زمانی پنجم فروردین 1388 تا سیام آبان 1390 که مشتمل بر 616 مشاهده بوده که جهت مجزا سازی پیشبینیهای داخل نمونهای و خارج از نمونهای، از تقریباً 90% از مشاهدات (556 مشاهده) جهت تخمین ضرایب مدل و از مابقی (60 مشاهده) جهت انجام پی...
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشکده علوم اقتصادی - دانشکده مدیریت و حسابداری
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023